
13 

Experimental investigation of the penetration of a 
high-velocity gas jet through a liquid surface 

By ROBERT B. BANKS 
SEAT0 Graduate School of Engineering, Bangkok, Thailand 

AND D. V. CHANDRASEKHARA 
Technological Institute, Northwestern University, Evanston, Illinois 

(Received 21 June 1962) 

This investigation is concerned with the phenomenon of a gas jet impinging on 
and penetrating into a liquid. The study has been restricted to the cases of 
circular and plane jets penetrating a liquid a t  right angles. Both ‘free streamline ’ 
and turbulent jets were considered. The phenomenonwas analysed from two view- 
points. The first, a stagnation-pressure analysis, related the depth of the surface 
depression or cavity to the stagnation pressure based on the centre-line velocity 
of the jet in the neighbourhood of the surface. The second, a displaced-liquid 
analysis, related the weight of the liquid displaced from the cavity to the momen- 
tum of the jet. 

Numerous experiments were conducted in which the cavity depth, diameter 
or width, and peripheral lip height were measured. The role of surface tension in 
affecting the cavity depth was considered and the phenomenon of drop formation 
was examined. Some attention was given to the case of a plane jet impinging on 
a moving liquid. It was found that the experimental data fit into the framework 
of these analyses quite consistently. 

1. Introduction 
Numerous studies have been carried out recently on topics concerned with the 

fluid mechanics of jets in the proximity of rigid boundaries. These investigations 
have been devoted primarily to determination of velocity and pressure dis- 
tributions for various configurations. A logical extension of such studies is to 
examine similar problems when a jet is impinging on a deformable surface such 
as a liquid. The simplest cases to consider are the circular and plane jet impinging 
normally on a liquid surface as shown in figure 1. Depending on the relative 
distance of the nozzle above the surface, the gas jet will behave as a ‘free stream- 
line’ (i.e. irrotational with sharp boundaries) flow or as a turbulent spreading jet. 
Hence four categories of problems are presented, depending on whether the jet 
is circular or plane and whether it is to be considered a potential or a turbulent 
flow. The velocity of the jet is V,  a t  the nozzle and the diameter or width of the 
nozzle is do or b,, respectively. The exit plane of the nozzle is a distance H above 
the still liquid surface. Fluid properties are indicated in the figure. 

The impinging jet causes a depression on the liquid surface, though in the case 
of a strong jet i t  is more descriptive to say that the penetrating jet creates a 



14 Robert B. Banks and D. V .  Chandrasekhara 

cavity in the liquid. The maximum depth of the depression or cavity is no. 
When the depression is relatively large, a lip, of height np, is formed around or 
along the cavity. This lip defines a cavity diameter, d,, or width, b,. In  addition, 
other features are observed. The cavity bottom tends to oscillate vertically and 
the sides laterally in the case of deep cavities. There is considerable gas entrain- 
ment in the liquid. Surface ripples are propagated from the disturbed zone. 
A circulation is induced in the liquid as a result of the tangential drag of the gas 
on the liquid. Under certain conditions, liquid drops are formed and projected 
from the region of the cavity. 
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FIGURE 1. Definition sketch for the jet penetration study. 

The aim of this experimental investigation was to determine the cavity depth, 
diameter or width, and lip height as functions of the various independent 
variables. The aspect of liquid-drop formation was studied to a limited extent. 
Some consideration was given to the case in which the liquid was moving hori- 
zontally with respect to a vertical plane jet. Features of cavity oscillation, ripple 
formation, and circulation in the liquid were not studied in detail. I n  all of the 
experiments, air was the gas and water was the liquid. 

2. FIow fields associated with impinging and penetrating jets 

One approach to the problem is to consider a free-streamline jet impinging norm- 
ally on a rigid flat surface. The solution to the plane jet problem has been 
presented by Milne-Thompson (1960) who gives the following expression for the 
potential-flow velocity distribution along the surface 

2.1. The ' free-streamline ' jet 

y / b ,  = 2/n{arctan (u/&) + arctanh (~1%)). (2.1) 

This relationship is shown in figure 2. It is seen that the velocity along the 
surface is essentially equal to the approach velocity at a distance of about two 
nozzle widths from the stagnation point. The pressure distribution shown in 
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figure 2 was obtained from the Bernoulli equation. The thrust on the surface is 
obtained from elementary momentum considerations, i.e. 

where pc is the density of the gas. The form of (2 .1)  does not permit an explicit 
expression for the pressure distribution. Since an explicit form was necessary 
to proceed with the analysis, a normal curve was selected as an approximation 
to the exact pressure distribution. If it  is assumed that 

P/*PC v; = exp - a(y/bCJ2f (2.3) 

0 0.2 0.4 0.6 0 8  1.0 1.2 1.4 1.6 

Ylb, 

FIGURE 2.  Velocity and pressure distribution of a plane free jet impinging on a flat surface. 
Comparison of assumed normal distribution with exact pressure distribution. 

then from (2 .2 )  i t  is established that a = $IT. This approximation is shown in 
figure 2. 

A similar expression may be obtained for the case of a circular jet. Though it 
is not possible to obtain an exact solution, corresponding to (2 .1) ,  experimental 
data indicate that an error curve approximation is not unreasonable. For the 
circular case, the thrust on the surface is 

R = t p c n d ;  V;  = t n / o m p r d r ,  (2 .4)  

and if the pressure distribution is assumed t o  be 

P l h  J3 = exp -P(r/do)2>, (2 .5)  

then a value of /3 = 2 is obtained from (2 .4) .  Figure 3 compares data obtained by 
Gibson (1934)  with the assumed distribution. 
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Equations (2.3) and (2.5) are employed below to describe the pressure dis- 
tribution on a liquid surface, for the case of a weak jet, when the nozzle is close 
to the surface, i.e. for small values of Hid, or Hlb,. In  this instance the jet has 
not yet begun to spread and hence may be regarded as a potential flow. 

rP0 

FIGURE 3. Pressure distribution of a circular free jet impinging on a flat surface. Com- 
parison of assumed normal distribution with data of Gibson (1934). 

( A )  p/+pV: = exp { - 2(r /~ i! , )~} ;  (B)  data of Gibson (1934). 

2.2. The free turbulentjet 

For large values of Hld, or Hlb,, the jet velocity is reduced as a result of spreading. 
The value of the centre-line velocity in the neighbourhood of the surface may be 
estimated from the equation for the velocity distribution of a free turbulent jet. 
For the plane case 

V,/V, = K,(bOlz)*, 

where V, is the centre-plane velocity. The complete velocity distribution of a 
plane jet has been expressed in numerous forms. Some investigators, e.g. 
Albertson, Dai, Jensen & Rouse (1950), Forstall & Gaylord (1955) and Miller 
& Comings (1957), have established that a normal error curve is descriptive of 

(2.6) 

V the distribution, i.e. 
(2,.7) 

where V is the velocity at (x, y). 
The region of fully developed turbulent flow begins some distance downstream 

from the plane of the nozzle. A transition zone exists for several nozzle widths 
in which the uniformly distributed velocity at the nozzle acquires its fully 
developed form. The length of this zone, x,, is expressed by x, = n, b,. Previous 
investigations have established values of the constants K ,  and n,; some results 
are given in table 1. 

Similar expressions apply to the circular turbulent jet. The centre-line velocity, 
V,, is given by 
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and presumably the complete velocity distribution, V = V(x ,  r ) ,  may 
pressed by a normal curve 

- V = exp(---l(-)2]. 1 r  
v, 2c x 

17 

be ex- 

(2.9) 

The length of the potential core is xo = n2x. Values of I<, and n2 obtained in 
previous studies are given in table 2. 

Investigator Kl 121 

Albertson et ul. (1950) 2.28 5.2 

Reichardt (1941) 2.40 - 
Miller & Comings (1957) 2.63 7-0 

TABLE 1. Constants for the plane turbulent jet. 

Investigator K2 122 

Poreh & Cermak (1959) 7.7 9.0 

Corrsin & Uberoi (1949) 6.6 - 
Folsorn & Ferguson (1949) 5.13 8.0 
Minze & Van der Hegge Zijnen (1948) 6.39 10.0 

Albertson et ul. (1950) 6.2 6-2 

Forstall & Gaylord (1955) 6.4 5.0 

TABLE 2. Constants for the circular turbulent jet. 

3. Analytical models of the penetrating jet 
3.1. Dimensional analysis 

For the purpose of dimensional analysis, the momentum of the jet, M = pcao V:, 
is taken as an independent variable. The area, a,, is and: for the circular jet and 
b,L for the plane jet; L is the length of the plane nozzle. Neglecting the effects 
of viscosity and surface tension, dimensional analysis yields the following 
expression for the circular case 

M l Y 4  = f1(no/H, Hld0)l (3.1) 

where y = pLg is the specific weight of the liquid. For the plane case the corre- 
sponding expression is 

(3.2) MlyLni  = f2(no/H,H/bo). 

Other combinations of linear dimensions could appear as volume units in the 
denominators of the left-hand members of (3.1) and (3.2). For example, 

M/yn0H2 = f&O/Hl HPO) (3-3) 

MlyLnoH = f&O/Hl HPO) (3-4) 

is an alternative expression for the circular jet and 

for the plane jet. If a Froude number is defined as P = V;/gno, the left-hand 
members of the preceding four equations become products of a density ratio, 
a length or area ratio, and the Froude number. For example, the left-hand side 
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of (3.4) becomes (pc/pL) (b,/H)P. If a modified Froude number is termed 
F* = (pG/pL)P, then (3.4) becomes 

Robert B. Banks and D. V .  Chandrasekhara 

F* = f,*(no/H, HlbO), (3.5) 

and the other expressions could be presented the same way. It is not surprising 
to see that a Froude number plays a predominant role in the phenomenon. 

3.2. Analytical model I : stagnation pressure analysis 
Let V ,  denote the centre-line velocity of the jet in the proximity of the stagnation 
point. Neglecting the effect of surface tension, i t  is assumed that 

where no is the maximum depth of the depression or cavity in the liquid. For the 
circular free-streamline jet, V ,  is equal to V,, and one obtains 

M/yn,dg = in. (3.7) 

M/yIhob0 = 2. (3.8) 

The corresponding expression for the plane free-streamline jet is 

In  the case of a turbulent jet, V ,  is less than V,  as a result of spreading. For the 
circular case, (2.8) is employed to estimate the value of V,; the nozzle height, H ,  
is arbitrarily selected as the value of x. This yields 

M/yn,H2 = n/2K;. (3.9) 

A similar consideration for the plane turbulent jet, using (2 .6 )  to estimate the 
centre-plane velocity near the stagnation point, gives 

M/yLn,H = 2/Kq. (3.10) 

3.3. Analytical model II: displaced liquid analysis 
The displaced liquid analysis assumes that the force which the jet exerts on the 
liquid is equal to the weight of the displaced liquid. It is also assumed that the 
depression is sufficiently small that the change in shape of the liquid surface does 
not appreciably alter the velocity and pressure distributions of the gas flow. 
This implies that the vertical component of momentum of the departing gas 
flow is zero. To determine the weight of the displaced liquid, it  is assumed that the 
cavity profile is established by a known pressure distribution on the surface. 

For the circular free-streamline jet, using the pressure distribution of (2.5) 
to compute the weight of displaced liquid, one obtains 

Mlyn,dg = r/P. (3.11) 

This result, when compared with (3.7), reiterates that ~3 = 2 .  The plane free- 
streamline case, using (2.3) as the pressure distribution, results in 

(3.12) 

and it is noticed from (3.8) that this implies again that a: = in. 
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Next, the results of a study by Poreh & Cermak (1959) are employed to examine 
the case of the circular turbulent jet impinging on a liquid surface. These in- 
vestigators measured the pressure distribution on a submerged rigid flat surface 
caused by a submerged liquid jet. They obtained the expression 

n = (M/yH2) (38.5 - 4800(~ /H)~) ,  (3.13) 

where n, in their terminology, is the additional pressure head on the solid boun- 
dary due to the normally impinging jet. It is now assumed that this quantity, 
n = n(r) ,  is the profile of a liquid surface resulting from an impinging circular 
gas jet. Equation (3.13) may be rewritten in the form 

nlno = 1 - p* (rlH)2, (3.14) 

rlfJ 
FIGURE 4. Pressure distribution of a circular turbulent jet impinging on a flat surface. 
Comparison of assumed normal distribution with data of Poreh & Cermak (1959). 
( A )  n/no = exp {-p*(r /H)z};  (B)  n/no = 1 -/3*(r/H)2. 0 ,  Data of Poreh & Cermak (1959) 
,8* = 125. 

where p* = 4800/38.5 = 125 and no = 38.5M/yH2. The experimental results of 
Poreh & Cermak and (3.14) are shown in figure 4. In  an effort to describe these 
data over a broader range a normal error curve was fitted. It is observed in 
figure 4 that such a curve, viz. 

n/no = exp { - P* (rlW1 (3.15) 

agrees fairly well with the data. This assumed profile equation enables one to 
compute the volume of the cavity. Equating the thrust of the jet to the weight 

(3.16) 
of displaced liquid gives 

which may be expressed in the alternative form 

Mlyn0H2 = 7TIP*, 

n,lH = (..IP*)*I(M/YnW (3.17) 

Comparison of (3.9) and (3.16) reveals the interesting relationship, Pyc = 2Ki. 
Also, (2.5) and (3.15) indicate that the same pressure distribution and hence 

2-2 
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cavity profile will be produced by the circular free-streamline jet and the tur- 

(3.18) 
bulent jet when 

A similar analysis is proposed for the case of the plane turbulent jet. It is 
assumed that a normal error curve, analogous to (3.15), is descriptive of the 

(3.19) 
cavity shape, i.e. 

This assumption results in 
MiyLnoH = b-/&*P, (3.20) 

or, alternatively, no/H = ( n / a * ) ~ / ( M / y W .  (3.21) 

Again, a relationship is established by (3.10) and (3.20), which gives a* = @K;'. 
Finally, with regard to (2.3) and (3.19), the same liquid surface profile is obtained 
for the plane free-streamline jet and turbulent jet when 

P*/P = (H/do)2. 

nlno = exp { - a*(Y/H)2). 

&*/a = (H/b,)'. (3.22) 

3.4. Eflect of surface tension 
The above analysis may be extended to take into account the effect of surface 
tension. To accomplish this most easily, it  is assumed that the cavity shape is 
still described by a normal error curve, i.e. by (3.15) and (3.19) for the turbulent 
jet, and by expressions corresponding to (2.3) and (2.5) for the free-streamline jet. 
For the circular case, the condition for stagnation-point equilibrium is 

&pG V,Z = yn, + 2a/R, (3.23) 

instead of (3.6); a is the surface tension. The radius of curvature at the stagnation 
point, R,, is determined from (3.15); the result is Ro = H2/2P,n,. Substituting 
this quantity in (3.23) and again using (2.8) to estimate V,, one obtains 

M/yno  H 2  = (n/2K;) (1  + 4crP,/yH2). (3.24) 

If the second term in the brackets of (3.24) is large with respect to unity, i.e. if 
surface tension dominates the gravity body force, then (3.24) reduces to 
M = const. (cn,). A similar result is obtained for the free-streamline case. 

3.5. Deep cavities 
The normal error curve serves as a convenient description of the pressure dis- 
tribution and for very shallow cavities it would appear to be a reasonably 
accurate expression of the cavity shape. However, for cavities of moderate or 
considerable depth, the above analytical models need to be modified or replaced. 

The simplest modification, and one which accurately predicts a trend of the 
deep-cavity data, is the following. When a cavity of appreciable depth is formed, 
the jet travels somewhat farther than it would otherwise and hence the velocity 
near the stagnation point is reduced due to further spreading. This 'added 
travel of jet' modification is manifested by substituting H +no, instead of H ,  
in the expressions for the centre-line velocity distributions, (2.6) and (2.8), 
employed in the stagnation-pressure analysis. Alternatively, it  is apparent that 
as the cavity becomes deeper, the assumption that the velocity and pressure 
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distributions in the gas flow field are unaffected is no longer valid. Such altera- 
tion in pressure distribution, in turn, changes the cavity shape. A rather arbitrary 
way to alter and ‘deepen’ the cavity, but with an eye on the above, is to replace 
H by H + no in the equations for the cavity profile (3.15) and (3.19), as used in the 
displaced-liquid analysis. From either viewpoint, this modification leads to the 
same result. Neglecting the effect of surface tension, the equation for the 
circular turbulent jet case becomes 

and for the plane jet case one obtains 

(3.25) 

(3.26) 

These relationships are modifications of (3.17) and (3.21), respectively. 
Completely rational models of the deep cavity would require a precise formula- 

tion of the mechanics of interaction between the liquid and the gas. Birkhoff 
(1950) has presented a hodograph method for the determination of the stationary 
streamline of discontinuity in an infinite-cavity flow; such a streamline would 
correspond closely to the gas-liquid interface of the present problem. Birkhoff 
8: Zarantonello (1957) have outlined various approximate solutions to axially- 
symmetrical flow problems which bear on the jet-penetration phenomenon. One 
such solution involves the construction of Rankine-type flows. This approach 
utilizes a half-line of sources of constant density as an approximation to an 
infinite-cavity flow. The result anticipates a paraboloidal cavity whose shape, 
in the present nomenclature, is r2 = 4m(n + m), where m is the source strength. 
Intuitively, cavities of approximately elliptical shape would be formed when the 
jet is deeply penetrating. However, it  appears that knowledge of the exact shape 
of the cavity is not vital as far as the prediction of the cavity depth is concerned. 
A more important feature in this respect is that the vertical component of 
momentum of the departing gas flow is appreciable when the ratio of cavity 
diameter (or width) to depth becomes small. 

4. Laboratory apparatus and experimental procedure 
4.1. Apparatus 

Three separate laboratory arrangements were assembled for the purpose of 
obtaining experimental data. These are described as follows. 

(a)  Deep water tank with circular nozzles. A Plexiglass tank of 30 in. diameter 
and 42 in. height was employed to study the behaviour of an air jet penetrating 
into deep water. The tank rested on a steel frame; vertical extension of the frame 
supported the air inlet pipe and nozzle. The latter was situated so that the air 
flow was vertically downward and on the tank centre-link. The distance between 
the still water surface and the plane of the nozzle was altered by changing either 
the depth of water in the tank or by altering the length of a pipe section upstream 
from the nozzle. The nozzles employed in the deep water experiments were of 
three sizes: a, $ and 2 in. diameter. They were designed in accordance with ASME 

\ 
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specifications for elliptical-approach nozzles. The pipe to which the nozzles were 
attached was 1$ in. in diameter. Air was supplied by a Roots-Connerville positive 
displacement blower. 

(b)  Shallow water tank with circular nozzles. A Plexiglass tank, approximately 
28in. square with sides about 3in. in height, was used for experiments on jet 
penetration in shallow water. The three nozzles were connected to an inlet pipe 
of l i in .  diameter such that the nozzle centre-line passed through the centre of 
the tank. 

(c) Rectangular channel with plane nozzle. Jet  penetration experiments in- 
volving plane nozzles were conducted in an open channel of 12in. width, 18in. 
height and 18ft. length. The sides and horizontal bottom of the channel were 
made of Plexiglass and were supported by a frame made of steel angles and pipe. 
Air was supplied to a brass manifold installed between the vertical side-walls 
of the channel. A horizontal baffle plate, built inside the manifold, produced 
a uniform distribution of flow from the plane nozzle. The width of the nozzle 
could be varied by means of two narrow bars installed in guide slots at the 
channel walls. Moulding clay was placed around the manifold sides to prevent 
leakage of air. The depth of water in the channel could be easily altered to change 
the effective nozzle height. A small centrifugal pump was employed to recirculate 
the water through the channel when desired. 

4.2. Metering 
Mass flow rates for the circular-jet studies were determined by employing the 
test nozzles as flow meters. Flow rates for the plane-nozzle experiments were 
obtained by means of a sharp-edged orifice plate installed in the air supply pipe. 
Flow rates were varied, in both the circular and plane nozzle tests, by means of 
a small gate valve installed a t  a pipe-tee in the air supply pipe between the blower 
and the respective meter, i.e. a portion of the flow was discharged to atmosphere. 
Flow rates were computed from the customary formulas for compressible flow 
metering. Water which was recirculated through the open channel during some 
of the plane-jet experiments was metered by a sharp-edged orifice plate. 

4.3. Experimental procedure 
A typical experiment was conducted as follows. The test nozzle was set at  a 
desired height above the water surface and the gate valve, by-passing the air 
flow from the blower, was slowly closed until a shallow cavity appeared on the 
water surface. A hook gauge, whose zero reading had been established previously 
by the still water surface, was used to measure the cavity depth. This apparatus 
was designed with a horizontal arm sufficiently long to probe the cavity from 
below without disturbing the air-flow pattern or the cavity profile. Other probes 
were used to measure the cavity diameter or width and the height of the peri- 
pheral lip. In  nearly all experiments, the cavity bottom oscillated to some degree. 
Measurements were made of the maximum and minimum cavity depths for each 
experiment, and the arithmetical average was used in all computations. Sub- 
sequent experiments were conducted by increasing the air flow rate and repeating 
the measurement procedure. 
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4.4. Scope of experiments 
A total of 282 experiments were conducted; 69 were carried out in the deep water 
tank, 110 in the shallow water tank, and 103 in the rectangular charnel. The 
ranges of test variables were as follows: 

Nozzle diameter, do: 
Nozzle width, b,: 
Nozzle elevation, H :  
Water depth, D: 
Nozzle velocity, V,: 
Volumetric flow rate, Q: 
Nozzle Reynolds number, R,: 
Moving-water velocity, V,: 
Moving-water Froude number, 

1 1 sin. 4, 2 ,  4 

&in. 
0.10 to l*Oft. 
0.083 to 3.0ft. 
25.2 to 420ft./sec. 
0-0086 to 1.158ft.3/sec (STP). 
2150 to 80,000. 
0.175 to 0.551 ft./sec. 

PL: 0-040 to 0.238. 

Photo. 
no. 

134 
133 
132 
131 
130 
129 
128 

H = 0.7 in., bo = & in., 

(ft ./sec) (in.) 

45 0.24 
63 0.39 
79 0.51 
96 0-67 

121 0-87 
161 1.22 
179 1-34 

VJ " 0  

L = 1.5 in., 

M 

0-0031 
0.0061 
0.0095 
0.0141 
0.022 
0.040 
0.049 

Ub.1 

H/bo = 10.7 

MIyLn; 
1.02 
0.72 
0.67 
0.58 
0.54 
0.49 
0.50 

TABLE 3. Test variables of figure 5, plate 1. 

nolH 
0.35 
0.59 
0-77 
1.00 
1.30 
1.82 
2.0 

Photo. 
no. 

102 
103 
105 
106 
108 
110 
113 

V J  = 178 ft./sec, bo = -& in., L = 1.5 in., M = 0.0486 lb. 

h7 7x0 

(in.) (in.) 

0 1.8 
0.2 1-7 
0.4 1.5 
0.8 1.3 
1.4 1.2 
2.2 1.1 
3.2 0.7 

Hlbo 
0 
3.15 
6.3 

12.6 
22-1 
34.7 
50.4 

M l Y L d  
0.29 
0-32 
0.42 
0.50 
0.60 
0-80 
1.80 

TABLE 4. Test variables of figure 6, plate 2. 

"olH 
co 

8.6 
3.7 
1.7 
0.89 
0.49 
0.23 

4.5. Photographs 

None of the three laboratory arrangements described above proved suitable for 
photography and so a special series of tests was carried out. This series was 
conducted in an open channel of 6ft. length and 2ft .  height. The vertical side- 
walls of the channel were made of glass and were 14in. apart. Water could be 
circulated through the channel or kept quiescent a t  any depth up to 20in. 
A variable-throat plane nozzle was constructed for this series. The nozzle width 
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could be varied from zero to +in.; the length of the slot was l i in .  To minimize 
air leakage, grease was applied to the sides of the nozzle assembly, and the latter 
was attached to a point gauge to permit convenient changes in nozzle elevation. 
When the nozzle was a t  the desired height, a C-clamp was used to draw two steel 
angles a t  the top of the channel closer together; this assured a tight fit between 
the nozzle assembly and the glass side-walls. The nozzle approach consisted of 
two 9 in. radius quarter-cylinders attached to two +in. thick brass straps. The 
latter were clamped to a head piece which also served as a connexion to the air 
supply line. A machine bolt passing through the nozzle chamber could be turned 
and tightened to give the desired nozzle opening. A &in. diameter hole was 
drilled through one of the brass straps at the stagnation point defined by the +in. 
radius brass cylinder. A tube leading to a manometer column was attached to 
this hole; by this means, the air-flow rate could be determined. Photographs of 
two series of experiments are shown in figures 5 and 6, plates 1 and 2. Tables 3 
and 4 give the various test variables for these figures. 

I 1 

0 
1 

00 0 
0 

0.0 1 
0.1 1 10 100 

M l r 4  
FIGURE 7. Cavity-depth data obtained in the deep-water test apparatus 

using circular nozzles. Nozzle diameter: 0 ,  t in. ; 9, 4 in. ; .,% in. 

All of the circular jet data, i.e. the data of figures 7 and 8, are shown in figure 9. 
The equation of the line passing through the plotted points of figure 9 is given 
by (3.25) with a value of /?* = 125. The bend in the upper part of the curve is 

5. Experimental results 
5.1. Circular j e t  cavities 

Data obtained in the deep water tank using circular nozzles are shown in figure 7. 
All three nozzles were tested a t  values of H = 0.25, 0.50, 0.75 and l.0ft. Data 
obtained in the shallow water tank with the same nozzles are presented in figure 8. 
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I I 

0.1 r . 

25 

I I I 
1 10 100 1000 

M l y 4  

FIGURE 8. Cavity-depth data obtained in the shallow-water test apparatus 
using circular nozzles. Nozzle diameter: 0 ,  4 in.; 0 ,  9 in.; 0 ,  f in. 
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Mlyn3, 

FIGURE 9. Correlation of all circular-jet cavity-depth data. 
0, Deep-water tests; 0 ,  shallow-water tests. 

00 

predicted fairly well by this equation. It is noticed in figure 9 that a number of 
points fall well above the plotted line. These points correspond to tests in which 
H/d,  was less than about 8; this indicates that the jet was not behaving as a fully- 
developed turbulent flow. Accordingly, the data were re-plotted as shown in 
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figure 10. The asymptote for small values of the abscissa is given by (3.11) with 
/? = 2. An alternative form of (3.25), viz. 

(5.1) 

is the asymptote for large values of (H  + %,)/do. The data appear to be compatible 
with these asymptotic expressions. 

MirnoG = W P * )  ( ( H  + no)/~o)2 

100 

N O  

2 10 

% 
x 

1 
0 

FIGURE 10. Cavity-depth data expressed in terms of the distance-diameter ratio 
( H  + no)/do. Nozzle diameter : 0, a in. : 8 , -$ in. : 0 ,  8 in. 

Data were also computed in terms of the surface tension analysis of $3.4. 
A value of = 0.0051b./ft. was employed in the computation. The results are 
shown in figure 11. This plot is similar to figure 7 except that the points now fall 
somewhat closer to the straight line for large values of no/H. However, until 
more data are available to examine the effect of surface tension more closely, it 
will be assumed that the correlations of figures 9 or 10 give the cavity depth for 
circular jets. 

A cubic equation arises from (3.25) when an explicit solution is sought for n,. 
However, for n,/H < 0-1, 

where ,8* = 125. Previously, Collins & Lubanska (1954) conducted experiments 
on the depression of a water surface by an air jet. Their results yielded a value 
of /3* = 166. The experiments of Poreh & Cermak gave /?* = 125 which is for- 

no = (P*/70 ( M / y H 2 ) ,  ( 5 4  



Penetration of a high-velocity gas j e t  through a liquid surface 27 
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FIGURE 11. Cavity-depth data expressed in terms of the surface-tension model of (3.24). 
Nozzle diameter ; 0, f in. ; 0 , 4 in. ; 0 ,  f in. 

FIGURE 12. Plot of the cavity diameter-to-depth ratio. 
Nozzle diameter: 0, $ in. ; 0 , Q in. ; 0,  f in. 

tuitously close to the result obtained in the present study. For values of n,/H 
much larger than unity, (3.25) gives 

no = (P*J!f/7rY)f> (5.3) 

a result which requires considerably more data to verify. Collins & Lubanska 
reported values of n,(y/M)f in the range 3.2 t o  3.8 for Hid, = 0. The average 
value of 3.5 is very close to that given by (5.3), viz. (P*/n)* = 3.42. 
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A dimensionless plot of the cavity diameter is given in figure 12 and the cavity 
lip height is introduced in the ordinate of figure 13. Anumber of interpretations 
could be proposed for these plots. For example, figure 13 represents a 'cavity 
steepness ratio' relationship. From (3.15) the maximum slope of the cavity is 
(2P*/e)4 (n,/H). Using (3.17) and assuming that this maximum slope is approxi- 
mately equal to (no +np)/4dc, one obtains 

dc/(no + np) = (2e/n)* (M/yng)+. (5.4) 

I L I 1 

0 

0 

0 0  

I 0 I 
- 

0.1 1 10 

M l Y 4  
100 

FIGURE 13. Plot of the 'cavity steepness ratio', d,/(.n,+n,). 
Nozzle diameter: 0, in. ; 0 , 3 in. ; @, 3 in. 

Figure 13 indicates that the half-power slope is predicted accurately by this 
analytical model though the computed curve constant is about 12 % lower than 
the experimental value. 

When the ratio of cavity diameter to depth is small, the jet possesses an appre- 
ciable vertical velocity component following impingement. This feature may be 
included in an analysis by assuming the cavity to be parabolic or elliptical in 
form. For the circular-jet case, an assumption that the change in vertical momen- 
tum is equal to the weight of displaced liquid gives 

H{1 +ni/(1 +nbz)*} = 2ny rndr, (5.5) so: 
where rc defines the radius at which the gas flow separates from the liquid. It is 
assumed that the direction of the departing gas flow is equal to the slope of the 
cavity, n:, at the separation point. If a deep parabolic cavity is selected, one 
obtains dc/no = (16/n)fr (M/yng)* and the assumption of an elliptical cavity gives 
d,/n, = (12/n)4 (M/yn$)*. These results agree reasonably well with figure 12. 

Over a fairly broad range, figure 12 may be described by 

dcln, = %(M/Yn:)+, (5.6) 

in which the curve constant, m2, isapproximately 2.9. Utilizing (5.2), one obtains 
dc/H = mz(n//3,)4 = 0.46; this result is reiterated in figure 14. It is of interest 
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to try to to express this result in terms of the velocity distribution of a free tur- 
bulent jet. The analysis of Albertson et al. for the circular spreading jet yields 
K ,  = 1/2C2, where K ,  and C, are defined in (2.8) and (2.9), respectively. This 
relationship, together with the equivalence of results of (3.9) and (3.16), viz. 

(5.7) 
/?* = 2K!, gives v/v, = exp { - P* (r/421, 

0.1 100 

FIGURE 14. Plot of the ratio of cavity diameter to nozzle elevation. 
Nozzle diameter: 0, t in. ; 8 ,  t in. ; 0 ,  2 in. 

which closely resembles the assumed cavity profile equation (3.15). A fictitious 
velocity, V,, is now defined as 

V,/% = exp { - P*(rc/H)2).  (5.8) 

In other words, V ,  is the velocity which the turbulent jet would have a t  the point 
( H ,  re) if the surface were absent. Since rc/H = &n,(n/P*)i, at least over a certain 
range, then V,/V, = exp ( - nm;/4). The resulting numerical value, with m, = 2.9, 
is V,/& = 0.0014. Two conclusions stem from this computation. The first is that 
the cavity diameter is equal to about half the nozzle elevation. The second is 
that the cavity radius corresponds to the radius a t  which the jet velocity is about 
0.15 yo of the centre-line velocity of the associated free turbulent jet. 

5.2.  Plane cavities 

Data collected from experiments using a plane nozzle in the rectangular channel 
are presented in figure 15. Tests in which water was moving in the channel, in 
a direction normal to the mid-plane of the jet, are identified by the solid points. 
The equation of the line passing through the open points (i.e. the still-water 
tests) is (3.26), with a, = 78.5. The explicit solution of (3.26) yields 

(5.9) no/H = i{( 1 + 4M/k,  yLH2)i  - l}, 

where k, = (n/a*)i. For values of no/H < 0.1 this reduces to 

no = (a*/+M/yLH, (5.10) 

and for large values of n,/H, (5.9) becomes 

no = (M/k ,yL) f .  (5.11) 
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W Y h i  
FIGURE 15. Cavity-depth area obtained in the 12 in. width open channel using a plane 

nozzle. 0 ,  Still water; 0,  moving water. 

M/yLHa 

FIGURE 16. An alternative correlation of the plane-jet data, including data obtained in 
the 1.5 in. width open channel. 0 ,  Still water, 12 in. channel; 0 ,  moving water, 
12 in. channel; 8 ,  still water, 1.5 in. channel. 

( A )  n,/H = +{( 1 + 4M/k,  yLHa)* - l}. 
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Figure 16 presents an alternative plot of the plane-jet data; (5.9) is shown, using 
CI* = 78.5. The slope of the curve appears to be predicted correctly over the 
entire range but the curve constant is somewhat in error for values of n,lH larger 
than about 0.2. A dimensionless plot of the cavity width is shown in figure 17. 
The appreciably greater scatter of the plane-jet test data was probably due to 
three-dimensional effects created by the channel side-walls. 

1 

0 
000 

0 0 8 %  c, 

11 I I 
0.0 1 0.1 1 

MIyLH2 

FIGURE 17. Plot of the cavity width-to-depth ratio. 0, Still water; 0 ,  moving water. 

It is apparent from figures 15, 16 and 17 that the moving-water data are 
distinctly separated from the still-water data. Several attempts were made to 
express this difference in terms of the velocity of the water. However, on the 
basis of these limited data, the cavity depth appears to be independent of the 
water velocity; the important feature seems only to be whether the water is 
stationary or in motion. From figure 16 it is established that the cavity depth, 
at least in slowly moving water (V, = 0.175 to 0*550ft./sec), is approximately 
70% of the corresponding depth in still water. With the water in motion, the 
cavity became asymmetrical and the point of maximum depth was dis- 
placed downstream. It is noted that the minimum capillary wave velocity 
(i.e. C, = 0*76ft./sec) exceeded the maximum water velocity in these tests, 
and that the maximum (Froude number)&, V,/(gD)*, was 0.238. Additional 
work is planned for the study of plane-jet impingement on moving water. 

5.3. Sputtering 
One of the most apparent features of the phenomenon of a gas jet penetrating 
a liquid surface is the creation of liquid drops when the relative velocity at the 
interface reaches and exceeds a certain critical value. This feature is termed 
'sputtering'. When the velocity of the impinging jet is small, the liquid surface 
is depressed slightly and the liquid at  and near the surface moves radially or 
laterally away from the stagnation point. As a result, a circulation pattern is 
induced in the liquid consisting of two cylindrical vortices of opposite sense in 
the case of the plane jet and a toroidal vortex in the case of the circular jet. As 
the jet flow-rate is increased this flow pattern is more-or-less preserved, though 
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the cavity becomes deeper. In  addition, a reasonably well defined cavity lip is 
created. As the jet velocity is increased still further, drops begin to be thrown 
off into the air. It was possible to establish, with a fair degree of accuracy, when 
this sputtering threshold occurred. Results are given in table 5. 

The criterion for sputtering is apparently established by the depth of the 
cavity alone. If the critical cavity depth is taken as 0.045 ft. then the centre-line 
velocity of the approaching air jet is approximately 5Oft./sec in the neighbour- 
hood of the water surface. The velocity of the departing air jet would be less than 
this but still of the order of 40 to 50ft./sec. Several viewpoints were taken to  
examine this result, though none of these shed a great deal of light. For example, 
the results of Schwarz & Cosart (1961) on two-dimensional wall jets indicated 
that the interfacial shear stress, when sputtering commenced, was about 
0.031 lb./ft.Z. A Blasius turbulent boundary-layer computation predicted 

Range of cavity- 
depths measured sputtering commenced 

Cavity-depth, in ft., when 

in series 7 -7 

Apparatus (ft.) Mean Mill. Max. 

Deep-water series 0.010 to 0.208 0.045 0.038 0.048 
Shallow-water series 0.002 to 0.067 0.045 0.039 0.052 
Plane-jet series 

(a )  still water 0-005 to 0.108 0.040 0.033 0.050 
( b )  moving water 0-005 to 0.075 0.040 0.027 0.052 

TABLE 5 .  Sputtering threshold conditions. 

approximately 0.022 lb./ft.2. The ‘sheltering coefficient ’ analysis for wind- 
generated waves proposed by Jeffreys and discussed by Ursell (1956) was 
attempted. A rather indefinite result of this consideration was the determination 
of the value of the sheltering coefficient when sputtering commenced. Another 
viewpoint stems from the early considerations of Rayleigh (1948) regarding 
vibrations of a jet. For the case of an air jet penetrating through water, Rayleigh 
determined that the wavelength for maximum instability is A, = 6-48d0. Thus, 
a critical Strouhal number St = fcdo/V = do/& = 0.155 may provide a criterion 
for incipient drop formation. Finally, the Kelvin-Helmholtz interfacial in- 
stability relationship was considered. This criterion predicts instability at  an 
air-water interface when the interfacial velocity exceeds about 22 ft./sec. 
Considering that an instability would inherently precede the actual creation 
and projection of water drops, this computation is compatible with the observed 
sputtering velocity of about 40 to 50ft./sec. It would be worth while to study 
the sputtering feature in detail using other liquids. 

5.4. Discussion and conclusions 
A comparison of expressions obtained from the stagnation-pressure analysis 
and the displaced-liquid analysis resulted in the relationships a, = &K: for 
the circular jet and /Iy: = 2Kg for the plane jet. Quantities a, and Py: are scale 
factors which specify the standard deviations of the cavity profiles; K ,  and K,  
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FIGURE 5 .  Photographs of air jet penetration into still water. Test variable 
is jet velocity (see table 3). 
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FIGIJRE 6. Photographs of air jet penetration into still water. Test variable 
is nozzle elevation (see table 4). 

BANKS AND CHANDRASEKHARA 



Penetration of a high-velocity gas jet through a liquid surface 33 

are constants associated with the spreading of circular and plane turbulent free 
jets. Values of a* = 78.5 and p* = 125 give K ,  = 3.17 and K ,  = 7.9. These 
values agree fairly well with those given in tables 1 and 2, though precise agree- 
ment is not expected since H was arbitrarily used as the value of x in the velocity 
distribution equations. 

The quantity 1/2CE in the circular-jet velocity-distribution equation (2.9) 
was replaced by /3* in (5.7); on this basis, C, = 0.063. Townsend (1956) has 
presented the following equation for the circular jet 

v/y, = A,(d,/x) (1 + r2/8Po)-2, (5.12) 

where 7 = r / x  and A, = (3/32/3,)4. Since K ,  = A,, then p* = 3/16p0 and hence 
Po = 0.0015. This compares with values of Po = 0.00196 and K ,  = 6.39 given by 
Townsend. Incidentally, matching (5.7) and (5.12) in the region of small 11 
gives /3* = 1/4p0 and hence Po = 0.0020; matching at the inflexion points yields 
p* = 5/16a, and so Po = 0.0025. A similar computation is made for the plane-jet 
case. The coefficient 1/2Cf of (2.7) is arbitrarily replaced by a,. This yields a 
value of 0.080 for C,. Again, Townsend gives the following expression for the 

(5.13) 
plane jet V/V,  = A,(b, /x) i  sech2 a , ~ ,  

where 11 = y / x  and A ,  = (3a0/2)*. Since K ,  = A,, one obtains a* = 9nai/16. 
This yields a, = 6.6 as compared with a. = 9-1 and K ,  = 3.7 quoted by Townsend. 
Direct matching of arguments gives a* = a; which results in a. = 8.8. 

Though the numerical values computed above are fairly consistent, it  is em- 
phasized that this presentation is quite speculative and that considerably more 
evidence is needed before any rational relationships among pressure distribu- 
tions, cavity profiles and the associated velocity distributions can be indicated. 

Another result was obtained as a consequence of the assumptions regarding 
normal distribution of pressure on a surface. This result was that a free-streamline 
jet and a turbulent jet, impinging on a flat surface, create identical pressure 
distributions when a,/a = (H/b0) ,  for the plane jet and pS/P = (H/d,), for the 
circular jet. However, the turbulent jet cannot exert the same stagnation pressure 
as the free jet does once spreading has commenced. Thus, this result offers a 
criterion for at least estimating the length of the potential core. Using values of 
a = an and P = 2, one obtains n, = H/b,  = 10.0 and n, = H/do = 7.9. 

The nozzle Reynolds number covered a range from 2150 to 80,000 in the test 
series. In  this range the Reynolds number had no apparent effect on the main 
features of the cavity. It is concluded that the viscosity of the gas has a negligible 
role to play in the phenomenon beyond that normally associated with turbulent 
jets. However, viscous effects are undoubtedly important in connexion with 
interfacial instability, sputtering, and the development of circulation patterns 
in the liquid. Surface tension is most certainly a factor in the sputtering pheno- 
menon and under certain conditions the cavity depth will be affected by the 
surface tension. The specific weight of the liquid was not varied during the tests. 
However, there is no doubt that y is the all-important liquid property in the 
phenomenon. The same is true of the density of the gas, though again this was 
not varied in these tests. It is conceivable that some of the geometrical features 
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of the test apparatus (e.g. T, D and h, shown in figure 1) could affect the test 
results. For example, a large value of the ratio of tank lip height, h, to tank width, 
T, might alter the air velocity distribution sufficiently to affect the shape of the 
cavity. However, over the ranges tested, these geometrical variables had no 
apparent effect on the results. 

This investigation was carried out at Northwestern University and at  the 
SEAT0 Graduate School of Engineering. The work was supported by the Bureau 
of Ships of the U.S. Department of the Navy under contract no. NObs-84268. 
Mr F. G. Collins is to be thanked for his work in collecting the shallow-water 
data and the co-operation of Dr A. B. Cambel is gratefully acknowledged. 
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